An Overview of Electric Vehicle Load Modeling Strategies for Grid Integration Studies

Author:

Huaman-Rivera Anny1ORCID,Calloquispe-Huallpa Ricardo1ORCID,Luna Hernandez Adriana C.1ORCID,Irizarry-Rivera Agustin1

Affiliation:

1. Electrical and Computer Engineering Department, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA

Abstract

The adoption of electric vehicles (EVs) has emerged as a solution to reduce greenhouse gas emissions in the transportation sector, which has motivated the implementation of public policies to promote their use in several countries. However, the high adoption of EVs poses challenges for the electricity sector, as it would imply an increase in energy demand and possible impacts on the power quality (PQ) of the power grid. Therefore, it is important to conduct EV integration studies in the power grid to determine the amount that can be incorporated without causing problems and identify the areas of the power sector that will require reinforcements. Accurate EV load patterns are required for this type of study that, through mathematical modeling, reflect both the dynamic behavior and the factors that influence the decision to recharge EVs. This article aims to present an overview of EVs, examine the different factors considered in the literature for modeling EV load patterns, and review modeling methods. EV load modeling methods are classified into deterministic, statistical, and machine learning. The article shows that each modeling method has its advantages, disadvantages, and data requirements, ranging from simple load modeling to more accurate models requiring large datasets.

Funder

DOE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3