Anatomical Landmark Detection Using a Feature-Sharing Knowledge Distillation-Based Neural Network

Author:

Huang Di,Wang Yuzhao,Wang Yu,Gu Guishan,Bai Tian

Abstract

Existing anatomical landmark detection methods consider the performance gains under heavyweight network architectures, which lead to models tending to have poor scalability and cost-effectiveness. To solve this problem, state-of-the-art knowledge distillation (KD) methods are proposed. However, they only require the teacher model to guide the output of the final layer of the student model. In this way, the semantic information learned by the student model is very limited. Different from previous works, we propose a novel KD-based model-training strategy, named feature-sharing fast landmark detection (FSF-LD), which focuses on intermediate features and effectively transfers richer spatial information from the teacher model to the student model. Moreover, to generate richer and more reliable knowledge, we propose a multi-task learning structure to pretrain the teacher model before FSF-LD. Finally, a tiny and effective anatomical landmark detection model is obtained. We evaluate our proposed FSF-LD on a public 2D hand radiograph dataset, a public 2D cephalometric radiograph dataset and a private 2D hip radiograph dataset. On the 2D hand dataset, our FSF-LD has 11.7%, 12.1%, 12.0,% and 11.4% improvement on SDR (r = 2 mm, r = 2.5 mm, r = 3 mm, r = 4 mm) compared with other KD methods. The results suggest the superiority of FSF-LD in terms of model performance and cost-effectiveness. However, it is a challenge to further improve the detection accuracy of anatomical landmarks and realize the clinical application of the research results, which is also our next plan.

Funder

The National Natural Science Foundation of China

The Development Project of Jilin Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3