A Network Intrusion Detection Method Based on Domain Confusion
Author:
Affiliation:
1. Institute of Information Technology, PLA Information Engineering University, Zhengzhou 450003, China
2. National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450001, China
Abstract
Funder
National Natural Science Fund of China
Publisher
MDPI AG
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Link
https://www.mdpi.com/2079-9292/12/5/1255/pdf
Reference21 articles.
1. A systematic literature review of methods and datasets for anomaly-based network intrusion detection;Yang;Comput. Secur.,2022
2. Sommer, R., and Paxson, V. (2010, January 16–19). Outside the closed world: On using machine learning for network intrusion detection. Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berleley/Oakland, CA, USA.
3. Generative adversarial networks;Goodfellow;Commun. ACM,2020
4. Bontemps, L., Cao, V.L., McDermott, J., and Le-Khac, N.A. (2016, January 23–25). Collective anomaly detection based on long short-term memory recurrent neural networks. Proceedings of the International Conference on Future Data and Security Engineering, Can Tho City, Vietnam.
5. Kang, M.J., and Kang, J.W. (2017, January 13–16). Method of intrusion detection using deep neural network. Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Network Intrusion Detection Based on Cluster Learning Algorithm;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01
2. Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms;Seismological Research Letters;2023-10-17
3. On the Robustness of ML-Based Network Intrusion Detection Systems: An Adversarial and Distribution Shift Perspective;Computers;2023-10-17
4. Machine Learning-Based Intrusion Detection for Rare-Class Network Attacks;Electronics;2023-09-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3