Compact 15 mJ Fiber–Solid Hybrid Hundred-Picosecond Laser Source for Laser Ablation on Copper

Author:

Wang Tingting,Wang Jing,Zhao Meng,Peng Hao,Zhou Jianwei,Qu Guannan,Tan Yong,Cai Hongxing

Abstract

We report on a millijoule-level fiber–solid hybrid hundred-picosecond laser system with a stable performance and compact structure. The laser system is based on a master oscillator power amplifier structure containing an all-fiber master oscillator, a quasi-continuous-wave side-pumped Nd:YAG regenerative amplifier, and a double-pass amplifier. By using the filtering effect of fiber Bragg grating and the dispersion characteristics of single-mode fiber stretcher, the spectrum broadening caused by self-phase modulation effect is effectively suppressed. Thus, the gain linewidth of the Yb-doped fiber seed source and Nd:YAG laser amplifiers is accurately matched. The reason for thermally induced depolarization in the solid-state laser amplifier is theoretically analyzed, and a more flexible depolarization compensation structure is adopted in amplifier experiment. Furthermore, the pulse energy of 14.58 mJ and pulse width of 228 ps is achieved at 500 Hz repetition rate. The central wavelength is 1064.1 nm with a 3 dB bandwidth of 0.47 nm. The beam quality factors in the horizontal and vertical directions are 1.49 and 1.51, respectively. This laser system has a simple and compact structure and has a power stability of 1.9%. The high pulse energy and beam quality of this hundred-picosecond laser are confirmed by latter theoretical simulation of copper laser ablation. It is a very practical laser system for material processing and laser-induced damage.

Funder

Natural Science Foundation of Jilin Province

key scientific and technological research project of Jilin Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study on spectral morphological changes of narrow pulse width picosecond lasers;3rd International Conference on Laser, Optics, and Optoelectronic Technology (LOPET 2023);2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3