Abstract
The technological requirement for ever more efficient materials for the energy and electronics sectors has led to the consideration of numerous compositionally and structurally complicated systems. These systems include solid solutions that are difficult to model using electronic structure calculations because of the numerous possibilities in the arrangement of atoms in supercells. The plethora of such possible arrangements leads to extensive and large numbers of potential supercells, and this renders the investigation of defect properties practically intractable. We consider recent advances in oxide interfaces where studies have demonstrated that it is feasible to tune their defect processes effectively. In this review, we aim to contribute to the ongoing discussion in the community on simple, efficient and tractable ways to realise research in solid solutions and oxide interfaces. The review considers the foundations of relevant thermodynamic models to extract point defect parameters and the special quasirandom structures method to model the supercell of solid solutions. Examples of previous work are given to highlight these methodologies. The review concludes with future directions, systems to be considered and a brief assessment of the relevant methodologies.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献