Building Function Recognition Using the Semi-Supervised Classification

Author:

Xie XuejingORCID,Liu YawenORCID,Xu YongyangORCID,He Zhanjun,Chen Xueye,Zheng Xiaoyun,Xie Zhong

Abstract

The functional classification of buildings is important for creating and managing urban zones and assisting government departments. Building function recognition is incredibly valuable for wide applications ranging from the determination of energy demand. By aiming at the topic of urban function classification, a semi-supervised graph structure network combined unified message passing model was introduced. The data of this model include spatial location distribution of buildings, building characteristics and the information mined from points of interesting (POIs). In order to extract the context information, each building was regarded as a graph node. Building characteristics and corresponding POIs information were embedded to mine the building function by the graph convolutional neural network. When training the model, several node labels in the graph were masked, and then these labels were predicted by the trained model so that this work could take full advantage of the node label and the feature information of all nodes in both the training and prediction stages. Quasi-experiments proved that the proposed method for building function classification using multi-source data enables the model to capture more meaningful information with limited labels, and it achieves better function classification results.

Funder

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Min-istry of Natural Resources, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3