miR-1/AMPK-Mediated Glucose and Lipid Metabolism under Chronic Hypothermia in the Liver of Freshwater Drum, Aplodinotus grunniens

Author:

Chen Jianxiang,Song ChangyouORCID,Wen Haibo,Liu Guangxiang,Wu Ningyuan,Li Hongxia,Xue Miaomiao,Xu Pao

Abstract

Our previous study demonstrated that low temperature could induce hepatic inflammation and suppress the immune and oxidation resistance of freshwater drum. However, the metabolism, especially the glucose and lipid metabolism involved, is poorly studied. To further explore the chronic hypothermia response of freshwater drum, an 8-day hypothermia experiment was conducted at 10 °C to investigate the effect of chronic hypothermia on glucose and lipid metabolism via biochemical and physiological indexes, and metabolic enzyme activities, miRNAs and mRNA-miRNA integrate analysis in the liver. Plasma and hepatic biochemical parameters reveal chronic hypothermia-promoted energy expenditure. Metabolic enzyme levels uncover that glycolysis was enhanced but lipid metabolism was suppressed. Differentially expressed miRNAs induced by hypothermia were mainly involved in glucose and lipid metabolism, programmed cell death, disease, and cancerization. Specifically, KEGG enrichment indicates that AMPK signaling was dysregulated. mRNA-miRNA integrated analysis manifests miR-1 and AMPK, which were actively co-related in the regulatory network. Furthermore, transcriptional expression of key genes demonstrates hypothermia-activated AMPK signaling by miR-1 and subsequently inhibited the downstream glucogenic and glycogenic gene expression and gene expression of fatty acid synthesis. However, glycogenesis was alleviated to the control level while fatty acid synthesis was still suppressed at 8 d. Meanwhile, the gene expressions of glycolysis and fatty acid oxidation were augmented under hypothermia. In conclusion, these results suggest that miR-1/AMPK is an important target for chronic hypothermia control. It provides a theoretical basis for hypothermia resistance on freshwater drum.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

the National Nonprofit Institute Research Grant of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3