Blockade of Tyrosine Kinase, LCK Leads to Reduction in Airway Inflammation through Regulation of Pulmonary Th2/Treg Balance and Oxidative Stress in Cockroach Extract-Induced Mouse Model of Allergic Asthma

Author:

Alqarni Saleh A.,Bineid Abdulwahab,Ahmad Sheikh F.,Al-Harbi Naif O.,Alqahtani Faleh,Ibrahim Khalid E.,Ali NematORCID,Nadeem AhmedORCID

Abstract

Asthma is one of the most common inflammatory diseases affecting the airways. Approximately 300 million individuals suffer from asthma around the world. Allergic immune responses in the asthmatic airways are predominantly driven by Th2 cells and eosinophils. Lymphocyte-specific protein tyrosine kinase (LCK) is a non-receptor tyrosine kinase which regulates several key intracellular events through phosphorylation of its substrates. Some of the intracellular signaling pathways activated by LCK phosphorylation help in differentiation of Th2 cells which secrete allergic cytokines that amplify airway inflammation. Therefore, this investigative study was designed to determine the role of LCK in a cockroach extract (CE)-induced airway inflammation murine model of allergic asthma. Further, the effect of a pharmacological LCK inhibitor, A-770041, on allergic airway inflammation and key intracellular pathways in CD4+ T cells was assessed. Our data exhibit that there is an activation of LCK during allergic airway inflammation as depicted by increased p-LCK levels in CD4+ T cells. Activated LCK is involved in the activation of ITK, PLC-γ, GATA3, NFkB, and NFATc1. Activated LCK is also involved in the upregulation of Th2 related cytokines, such as IL-4/IL-5/IL-13 and oxidative stress, and the downregulation of Treg cells. Furthermore, utilization of LCK inhibitor causes the reduction in p-LCK, PLC-γ, GATA3, and NFATc1 as well as Th2 cytokines and oxidative stress. LCK inhibitor causes upregulation of Treg cells in allergic mice. LCK inhibitor also caused a reduction in CE-induced airway inflammation and mucus secretion. Therefore, the inhibition of LCK signaling could be a fruitful approach to adjust allergic airway inflammation through the attuning of Th2/Treg immune responses. This study could lead to the design of newer treatment options for better management of allergic inflammation in asthma.

Funder

King Saud University

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference50 articles.

1. The Cytokines of Asthma

2. Allergic Endotypes and Phenotypes of Asthma

3. The immunology of asthma

4. The Economic Burden of Asthma in the United States, 2008–2013

5. Trends in Asthma Prevalence, Health Care Use, and Mortality in the United States, 2001–2010,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3