Indoor Positioning Systems in Logistics: A Review

Author:

Vaccari Laura1ORCID,Coruzzolo Antonio Maria1ORCID,Lolli Francesco12ORCID,Sellitto Miguel Afonso3ORCID

Affiliation:

1. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

2. Interdepartmental Centre En&Tech, Piazzale Europa, 1, 42124 Reggio Emilia, Italy

3. Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, UNISINOS, Av. Unisinos, 950—Cristo Rei, São Leopoldo 93022-000, Brazil

Abstract

Background: Indoor Positioning Systems (IPS) have gained increasing relevance in logistics, offering solutions for safety enhancement, intralogistics management, and material flow control across various environments such as industrial facilities, offices, hospitals, and supermarkets. This study aims to evaluate IPS technologies’ performance and applicability to guide practitioners in selecting systems suited to specific contexts. Methods: The study systematically reviews key IPS technologies, positioning methods, data types, filtering methods, and hybrid technologies, alongside real-world examples of IPS applications in various testing environments. Results: Our findings reveal that radio-based technologies, such as Radio Frequency Identification (RFID), Ultra-wideband (UWB), Wi-Fi, and Bluetooth (BLE), are the most commonly used, with UWB offering the highest accuracy in industrial settings. Geometric methods, particularly multilateration, proved to be the most effective for positioning and are supported by advanced filtering techniques like the Extended Kalman Filter and machine learning models such as Convolutional Neural Networks. Overall, hybrid approaches that integrate multiple technologies demonstrated enhanced accuracy and reliability, effectively mitigating environmental interferences and signal attenuation. Conclusions: The study provides valuable insights for logistics practitioners, emphasizing the importance of selecting IPS technologies suited to specific operational contexts, where precision and reliability are critical to operational success.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3