Up-Regulated Expression of Pro-Apoptotic Long Noncoding RNA lincRNA-p21 with Enhanced Cell Apoptosis in Lupus Nephritis

Author:

Chen Yi-Cheng,Kuo Pin-Yu,Chou Yu-Chi,Chong Hao-Earn,Hsieh Yu-Tung,Yang Mei-Lin,Wu Chao-Liang,Shiau Ai-Li,Wang Chrong-Reen

Abstract

Accelerated cell apoptosis with dysregulated long noncoding RNAs is the crucial pathogenesis in lupus nephritis (LN). Pro-apoptotic lincRNA-p21 was studied in LN patients, cell lines with lentivirus-mediated overexpression and CRISPR interference (CRISPRi)-conducted repression, and a mouse model. Clinical samples were from patients and age/sex-matched controls. Expression of lincRNA-p21 and endogenous RNA target miR-181a, were examined in mononuclear and urine cells. Guide RNA sequences targeting lincRNA-p21 were cloned into CRISPRi with dCas9/ Krüppel-associated box (KRAB) domain. LincRNA-p21-silened transfectants were investigated for apoptosis and miR-181a expression. LincRNA-p21-overexpressed cells were evaluated for apoptosis and p53-related down-stream molecules. Balb/C mice were injected with pristane to induce LN and examined for apoptosis and lincRNA-p21. Higher lincRNA-p21 levels were found in LN mononuclear and urine cells, positively correlated with activity. There were lower miR-181a levels in LN mononuclear cells, negatively correlated with activity. Doxorubicin-induced apoptotic cells had up-regulated lincRNA-p21 levels. CRISPRi with dCas9/KARA domain showed efficient repression ability on transcription initiation/elongation. CRISPRi-conducted lincRNA-p21-silenced transfectants displayed reduced apoptosis with up-regulated miR-181a levels, whereas lentivirus-mediated lincRNA-p21-overexpressed cells revealed enhanced apoptosis with up-regulated downstream PUMA/Bax expression. LN mice had glomerular apoptosis with progressive increased lincRNA-p21 levels. Our results demonstrate up-regulated lincRNA-p21 expression in LN, implicating a potential diagnostic marker and therapeutic target.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3