An Injection-Mold Based Method with a Nested Device for Microdroplet Generation by Centrifugation

Author:

Li Jichen12,Li Wen1ORCID,Wu Bizhu1,Bu Wenting1,Li Miaomiao1,Ou Jinyan1,Xiong Yuxiang1,Wu Shangtao1,Huang Yanyi3ORCID,Fan Yong1ORCID,Men Yongfan1ORCID

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230052, China

3. Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract

Microdroplets have been widely used in different fields due to their unique properties, such as compartmentalization, single-molecule sensitivity, chemical and biological compatibility, and high throughput. Compared to intricate and labor-intensive microfluidic techniques, the centrifuge-based method is more convenient and cost-effective for generating droplets. In this study, we developed a handy injection molding based method to readily produce monodisperse droplets by centrifugation. Briefly, we used two three-dimensional (3D) printed master molds with internal cavities to forge two coupled sub-molds by injecting polydimethylsiloxane (PDMS) and casted these two PDMS sub-molds into a nested structure that clamps the micro-channel array (MiCA) by injecting polyurethane resin. This method enables the generation of various sizes of monodispersed microdroplets by centrifugation with proper parameters within 10 min. To assess the performance of this method, homogeneous fluorescent hydrogel microspheres were generated and droplet digital polymerase chain reaction (ddPCR) was carried out. Overall, this method offers high-throughput droplet generation, reduces costs compared to other methods, and is user-friendly.

Funder

The National Key R&D Program of China

Shenzhen Fundamental Research Program

Open Fund Programs of Shenzhen Bay Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3