Estimation of Systolic and Diastolic Blood Pressure for Hypertension Identification from Photoplethysmography Signals

Author:

De Oliveira Hygo Sousa1ORCID,Pinto Rafael Albuquerque1,Souto Eduardo James Pereira1ORCID,Giusti Rafael1

Affiliation:

1. Institute of Computing, Federal University of Amazonas, Manaus 69077-000, AM, Brazil

Abstract

Continuous monitoring plays a crucial role in diagnosing hypertension, characterized by the increase in Arterial Blood Pressure (ABP). The gold-standard method for obtaining ABP involves the uncomfortable and invasive technique of cannulation. Conversely, ABP can be acquired non-invasively by using Photoplethysmography (PPG). This non-invasive approach offers the advantage of continuous BP monitoring outside a hospital setting and can be implemented in cost-effective wearable devices. PPG and ABP signals differ in scale values, which creates a non-linear relationship, opening avenues for the utilization of algorithms capable of detecting non-linear associations. In this study, we introduce Neural Model of Blood Pressure (NeuBP), which estimates systolic and diastolic values from PPG signals. The problem is treated as a binary classification task, distinguishing between Normotensive and Hypertensive categories. Furthermore, our research investigates NeuBP’s performance in classifying different BP categories, including Normotensive, Prehypertensive, Grade 1 Hypertensive, and Grade 2 Hypertensive cases. We evaluate our proposed method by using data from the publicly available MIMIC-III database. The experimental results demonstrate that NeuBP achieves results comparable to more complex models with fewer parameters. The mean absolute errors for systolic and diastolic values are 5.02 mmHg and 3.11 mmHg, respectively.

Funder

Samsung Electronics of Amazonia Ltda

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil

Amazonas State Research Support Foundation—FAPEAM

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3