Affiliation:
1. School of Emergency Management and Safety Engineering, North China University of Science and Technology, Tangshan 063210, China
2. College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
A numerical simulation method combining the detailed chemical reaction mechanism of methane deflagration with an approximate real tunnel structure was proposed to confirm whether the unevenness of the tunnel wall during a coal mine gas explosion can be ignored. The approximate real tunnel model and smooth wall tunnel model were developed using 3D modeling methods. The propagation and attenuation processes of shock waves in the two tunnel models, as well as the different dynamic responses of the two tunnel walls, were compared and analyzed. Research results show that the non-uniformity of the tunnel wall decreases the shock wave overpressure and propagation velocity. The peak overpressure reduction value of the shock wave reaches 81.91 kPa, and the shock wave overpressure reaches its peak at an extended maximum time of 7.4 ms. The stress distribution on the approximate real tunnel wall is discontinuous, the propagation speed of stress waves in the bend tunnel is slower, and the duration of high load is relatively low. The displacement of the approximate real tunnel after gas explosion is lower than that of tunnels with smooth walls, and the displacement of most measuring points on the tunnel on the right is only 1/3–1/2 that of the smooth tunnel.
Funder
National Natural Science Foundation of China—General Project
Central Guidance for Local Development Funding Projects
Natural Science Foundation of Hebei
2023 Scholarship Program for Introducing Overseas Students
Higher Education Youth Top Talent Project of Hebei
Youth Talent Promotion Program of North China University of Science and Technology
Key Scientific Research Project of North China University of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献