Affine Formation Maneuver Control for Multi-Agent Based on Optimal Flight System

Author:

Kang Chao1,Xu Jihui1,Bian Yuan1ORCID

Affiliation:

1. School of Equipment Management and Unmanned Aerial Vehicle Engineering, Air Force Engineering University, Xi’an 710043, China

Abstract

The use of affine maneuver control to maintain the desired configuration of unmanned aerial vehicle (UAV) swarms has been widely practiced. Nevertheless, the lack of capability to interact with obstacles and navigate autonomously could potentially limit its extension. To address this problem, we present an innovative formation flight system featuring a virtual leader that seamlessly integrates global control and local control, effectively addressing the limitations of existing methods that rely on fixed configuration changes to accommodate real-world constraints. To enhance the elasticity of an algorithm for configuration change in an obstacle-laden environment, this paper introduces a second-order differentiable virtual force-based metric for planning local trajectories. The virtual field comprises several artificial potential field (APF) forces that adaptively adjust the formation compared to the existing following control. Then, a distributed and decoupled trajectory optimization framework that considers obstacle avoidance and dynamic feasibility is designed. This novel multi-agent agreement strategy can efficiently coordinate the global planning and local trajectory optimizations of the formation compared to a single method. Finally, an affine-based maneuver approach is employed to validate an optimal formation control law for ensuring closed-loop system stability. The simulation results demonstrate that the proposed scheme improves track accuracy by 32.92% compared to the traditional method, while also preserving formation and avoiding obstacles simultaneously.

Publisher

MDPI AG

Reference36 articles.

1. A Testbed for Investigating the UAV Swarm Command and Control Problem Using DDDAS;Purta;Procedia Comput. Sci.,2013

2. Quan, L., Yin, L., Zhang, T., Wang, M., Wang, R., Zhong, S., Cao, Y., Xu, C., and Gao, F. (2022). Formation Flight in Dense Environments. arXiv.

3. A survey of multi-agent formation control;Oh;Automatica,2015

4. Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization (Vol.);Zhao;IEEE Trans. Autom. Control,2016

5. Rigid Graph Control Architectures for Autonomous Formations;Anderson;IEEE Control Syst.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3