From Retrofitting to Renewables: Navigating Energy Transition Pathways for European Residential Space Heating

Author:

Salim Steven S.12ORCID,Luxembourg Stefan L.1ORCID,Dalla Longa Francesco12,van der Zwaan Bob123ORCID

Affiliation:

1. TNO Energy Transition Studies, 1043 NT Amsterdam, The Netherlands

2. Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

3. School of Advanced International Studies, Johns Hopkins University, 40126 Bologna, Italy

Abstract

Transformative actions are crucial across all sectors emitting greenhouse gases. Nonetheless, energy transition research to date displays a notable imbalance, with a larger emphasis on the supply side than on the demand side. The present study addresses this inequity by focusing on residential sector space heating demand, a frequently overlooked energy service that currently contributes substantially to global greenhouse gas emissions. Our primary objective is to pinpoint effective climate policies and space heating strategies that align with the EU’s ambitious targets for emission reduction. We employ the recently developed TIMES-Europe model to conduct a comprehensive analysis of the residential sector’s policy frameworks, technological advancements, and associated costs. This analysis aims to determine the measures necessary to meet ambitious climate objectives within the European context. To achieve this, we formulate four distinct scenarios, each representing varying levels of ambition and collaboration among EU member states, thereby providing insight into the pathways toward achieving these targets. By implementing current intended EU policies on the renovation of dwellings, we project a substantial reduction of at most 850 PJ, or, i.e., a 19% decrease, in yearly energy demand for space heating between 2020 and 2050. In contrast, if the recent pace of dwelling renovation within the EU were to continue, space heating energy savings from renovation would only amount to less than 400 PJ/yr (i.e., a 9% reduction) in the same period. In our more ambitious climate scenarios, phasing out fossil fuels leads to widespread electrification of the European residential sector, and by 2050, electricity from heat pumps and electric boilers accounts for over 68% of the total residential sector space heating demand. The outcomes of our study underline the importance of implementing the currently planned EU policies. We also demonstrate the necessity for collaboration among EU member states in order to attain the common European climate targets under the most effective resource allocation.

Publisher

MDPI AG

Reference53 articles.

1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. UNFCCC (2022). United Nations Climate Change Annual Report 2021, UNFCCC.

3. Evidence map: Topics, trends, and policy in the energy transitions literature;Lu;Environ. Res. Lett.,2020

4. Eurostat (2023). Disaggregated Final Energy Consumption in Households, Eurostat.

5. Mantzos, L., Matei, N.A., Mulholland, E., Rózsai, M., Tamba, M., and Wiesenthal, T. (2018). JRC-IDEES 2015, European Commission, Joint Research Centre (JRC).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3