Interspecific Sharing of Closely Related Chloroplast Genome Haplotypes among Sclerophyllous Oaks in the Hot-Dry Valley of the Jinsha River, Southwestern China

Author:

Li Yao1ORCID,Tan Chao2,Zhang Wenxu1,Wang Lu2,Yang Zhi2ORCID,Fang Yanming2ORCID,Yang Yong2ORCID,Mao Lingfeng1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China

2. Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China

Abstract

Evergreen sclerophyllous oak forests (ESOFs) in southwestern China are a special vegetation type developed in response to the expansion of arid habitats after the uplift of the Himalayas. Here, we used chloroplast (cp) DNA and nuclear ribosomal (nr) DNA to investigate the fine-scale genetic variation patterns of six sympatric oaks (Quercus, Fagaceae) in the hot-dry valley ESOFs of the Jinsha River, southwestern China. Three cp genomes were assembled for each species. Nine cp genome haplotypes and 16 nrDNA haplotypes were identified based on single-nucleotide variants and indels. Our results demonstrated that discordance existed between the cpDNA and nrDNA phylogenies of the sclerophyllous oaks in section Ilex. The nrDNA phylogeny was consistent with species boundaries, while the cpDNA phylogeny was decoupled from taxonomy. Interspecific sharing of closely related cp genome haplotypes was detected between Quercus cocciferoides and the other two sclerophyllous oaks, Q. longispica and Q. franchetii. Specifically, Q. cocciferoides and Q. longispica sampled in a mixed stand exhibited two haplotypes that differed by a 9 bp indel. The local distribution of the two highly similar haplotypes suggested that they may have arisen from ancient introgression. Given that the two species have diverged for a long time, it is possible that the ancestral cp genome of one species was captured by another species through asymmetric introgression in early times, and an indel event occurred subsequently. Phylogenetic analyses using more previously published cp genome sequences indicated that Q. cocciferoides and Q. franchetii shared multiple cpDNA lineages of Ilex oaks, which may be caused by shared ancestral polymorphism and/or ancient introgression. Our study showed that at least three highly variable regions (ψycf1, ndhF-rpl32, and trnKUUU-rps16 or rpl32-trnLUAG) can distinguish the nine haplotypes identified by whole-cp genome sequences. These markers are useful for the evolutionary studies of the maternal lineages of oaks in hot-dry valley ESOFs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Jiangsu Postdoctoral Research Foundation

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3