Geo-Environmental Models of In-Situ Leaching Sandstone-Type Uranium Deposits in North China: A Review and Perspective

Author:

Zheng Fuxin1,Teng Yanguo1,Zhai Yuanzheng1ORCID,Hu Jingdan1,Dou Junfeng1,Zuo Rui1

Affiliation:

1. Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China

Abstract

Since the 1990s, sandstone-type uranium in the northern basin of China has become the main target for mining. Uranium mining can cause a series of impacts on the environment. A conceptual model of the geo-environment for sandstone-type uranium in northern China was described, which covers the changes in the geo-environmental characteristics in the natural state, in the mining process, during decommissioning and after treatment. Sandstone-type uranium is mainly distributed in the Songliao, Erlian, Ordos, Turpan–Hami and Ili Basins, which have arid climates and poor stratum permeability. Pitchblende is the main uranium-bearing mineral and is associated with iron, copper, coal, organic matter and other minerals. The mineral often has a low ore grade (0.01–1.0%) and high carbonate content (2–25%). Uranyl carbonate accounts for more than 90% of the total uranium in groundwater. The uranyl content is closely related to the TDS. The TDS of groundwater in the eastern and central ore belts is usually lower than 2 g/L, while in the western region, such as Xinjiang, it can exceed 10 g/L. In situ leaching (ISL) is the main mining method that results in groundwater pollution. Acid leaching leads to a pH decrease (<3), and heavy metals represented by U and Fe exceed the background values by hundreds of times, resulting in groundwater pollution. CO2 leaching is more environmentally friendly, and the excess ions are usually Ca2+, Mg2+, NO3− and HCO3−. Soil chemical anomalies originate mostly from wind erosion and precipitation leaching of decommissioned tailings. Uranium pollution is mainly concentrated within 20 cm of the surface, and the exceedance generally varies from two to 40 times. During ISL, a series of environmental measures will be taken to prevent pollution from being exposed to the surface. After treatment, the decommissioned uranium mines will likely have no impact on the surrounding environment. In the future, the protection of groundwater should be strengthened during production, and remediation methods based on electrokinetic, microbial and permeable reactive barrier (PRB) technology should be further researched.

Funder

The National Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3