Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment

Author:

Cardoso Inês M. F.,Cardoso Rita M. F.,da Silva Joaquim C. G. EstevesORCID

Abstract

Water quality management will be a priority issue in the near future. Indeed, due to scarcity and/or contamination of the water, regulatory frameworks will be increasingly strict to reduce environmental impacts of wastewater and to allow water to be reused. Moreover, drinking water quality standards must be improved in order to account for the emerging pollutants that are being detected in tap water. These tasks can only be achieved if new improved and sustainable water treatment technologies are developed. Nanomaterials are improving the ongoing research on advanced oxidation processes (AOPs). This work reviews the most important AOPs, namely: persulfate, chlorine and NH2Cl based processes, UV/H2O2, Fenton processes, ozone, and heterogeneous photocatalytic processes. A critical review of the current coupling of nanomaterials to some of these AOPs is presented. Besides the active role of the nanomaterials in the degradation of water contaminants/pollutants in the AOPs, the relevance of their adsorbent/absorbent function in these processes is also discussed.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3