Application of Parameterized Grain-Size Endmember Modeling in the Study of Quaternary Oxbow Lake Sedimentation: A Case Study of Tövises Bed Sediments in the Eastern Great Hungarian Plain

Author:

Eltijani AbdelrhimORCID,Molnár DávidORCID,Makó László,Geiger János,Sümegi Pál

Abstract

Abandoned channels are essential in the Quaternary floodplains, and their infill contains different paleoenvironment recorders. Grain-size distribution (GSD) is one proxy that helps characterize the alluviation and associated sedimentological processes of the abandoned channels. The classic statistical methods of the grain-size analysis provide insufficient information on the whole distribution; this necessitates a more comprehensive approach. Grain-size endmember modeling (EMM) is one approach beyond the traditional procedures that helps unmix the GSDs. This study describes the changes in the depositional process by unmixing the GSDs of a Holocene abandoned channel through parameterized EMM integrated with lithofacies, age–depth model, loss-on-ignition (LOI), and magnetic susceptibility (MS). This approach effectively enabled the quantification and characterization of up to four endmembers (EM1-4); the characteristics of grain-size endmembers imply changes in sedimentary environments since 8000 BP. EM1 is mainly clay and very fine silt, representing the fine component of the distribution corresponding to the background of quiet water sedimentation of the lacustrine phase. EM2 and EM3 are the intermediate components representing the distal overbank deposits of the flood. EM4 is dominated by coarse silt and very fine sand, representing deposition of overbank flow during the flood periods. This paper demonstrates that the parametrized grain-size EMM is reasonable in characterizing abandoned channel infill sedimentary depositional and sedimentation history.

Funder

Ministry of Human Capacities

European Regional Development Fund

Hungarian National Excellence Programme

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3