Scale-Up to Pilot of a Non-Axenic Culture of Thraustochytrids Using Digestate from Methanization as Nitrogen Source

Author:

de la Broise Denis,Ventura Mariana,Chauchat Luc,Guerreiro MaureanORCID,Michez Teo,Vinet Thibaud,Gautron NicolasORCID,Le Grand FabienneORCID,Bideau Antoine,Goïc Nelly Le,Bidault Adeline,Lambert ChristopheORCID,Soudant PhilippeORCID

Abstract

The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA–rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to reduce production costs, this study addresses the feasibility of the non-axenic (non-sterile) cultivation of Aurantiochytrium mangrovei on industrial substrates (as nitrogen and mineral sources and glucose syrup as carbon and energy sources), and its scale-up from laboratory (250 mL) to 500 L cultures. Pilot-scale reactors were airlift cylinders. Batch and fed-batch cultures were tested. Cultures over 38 to 62 h achieved a dry cell weight productivity of 3.3 to 5.5 g.L−1.day−1, and a substrate to biomass yield of up to 0.3. DHA productivity ranged from 10 to 0.18 mg.L−1.day−1. Biomass productivity appears linearly related to oxygen transfer rate. Bacterial contamination of cultures was low enough to avoid impacts on fatty acid composition of the biomass. A specific work on microbial risks assessment (in supplementary files) showed that the biomass can be securely used as feed. However, to date, there is a law void in EU legislation regarding the recycling of nitrogen from digestate from animal waste for microalgae biomass and its usage in animal feed. Overall, the proposed process appears similar to the industrial yeast production process (non-axenic heterotrophic process, dissolved oxygen supply limiting growth, similar cell size). Such similarity could help in further industrial developments.

Funder

European Union, “Interreg North-West Europe”

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3