Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning

Author:

Choi Jeong-Myeong,Seo Soo-Young,Kim Pum-Jun,Kim Yu-SeopORCID,Lee Sang-HwaORCID,Sohn Jong-HeeORCID,Kim Dong-KyuORCID,Lee Jae-Jun,Kim ChulhoORCID

Abstract

Hemorrhagic transformation (HT) is one of the leading causes of a poor prognostic marker after acute ischemic stroke (AIS). We compared the performances of the several machine learning (ML) algorithms to predict HT after AIS using only structured data. A total of 2028 patients with AIS, who were admitted within seven days of symptoms onset, were included in this analysis. HT was defined based on the criteria of the European Co-operative Acute Stroke Study-II trial. The whole dataset was randomly divided into a training and a test dataset with a 7:3 ratio. Binary logistic regression, support vector machine, extreme gradient boosting, and artificial neural network (ANN) algorithms were used to assess the performance of predicting the HT occurrence after AIS. Five-fold cross validation and a grid search technique were used to optimize the hyperparameters of each ML model, which had its performance measured by the area under the receiver operating characteristic (AUROC) curve. Among the included AIS patients, the mean age and number of male subjects were 69.6 years and 1183 (58.3%), respectively. HT was observed in 318 subjects (15.7%). There were no significant differences in corresponding variables between the training and test dataset. Among all the ML algorithms, the ANN algorithm showed the best performance in terms of predicting the occurrence of HT in our dataset (0.844). Feature scaling including standardization and normalization, and the resampling strategy showed no additional improvement of the ANN’s performance. The ANN-based prediction of HT after AIS showed better performance than the conventional ML algorithms. Deep learning may be used to predict important outcomes for structured data-based prediction.

Funder

National Research Fund of Korea

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3