Robust Adaptive Path Following Control of an Unmanned Surface Vessel Subject to Input Saturation and Uncertainties

Author:

Fan YunshengORCID,Huang Hongyun,Tan Yuanyuan

Abstract

This paper investigates the path following control problem of an unmanned surface vessel (USV) subject to input saturation and uncertainties including model parameters uncertainties and unknown time-varying external disturbances. A nonlinear robust adaptive control scheme is proposed to address the issue, more specifically, steering a USV to follow the desired path at a certain velocity assignment despite the involved disturbances, by utilizing the finite-time currents observer based line-of-sight (LOS) guidance and radial basis function neural networks (RBFNN). Backstepping and Lyapunov’s direct method are the main design frameworks. Based on the finite-time currents observer and adaptive control technique, an improved LOS guidance law is proposed to obtain the desired approaching angle to the desired path, making compensations for the effects of unknown time-varying ocean currents. Then, a kinetic controller with the capability of uncertainties estimation and disturbances rejection is proposed based on the RBFNNs, where the adaptive laws including leakage terms estimate the approximation error and the unknown time-varying disturbances. Subsequently, sophisticated auxiliary control systems are employed to handle input saturation constraints of actuators. All error signals of the closed-loop system are proved to be locally uniformly ultimately bounded (UUB). Numerical simulations demonstrated the effectiveness and robustness of the proposed path following control method.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3