Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists

Author:

Tang Chun-KaiORCID,Huang ChingORCID,Liang Kai-Cheng,Cheng Yu-Jung,Hsieh Yueh-LingORCID,Shih Yi-Fen,Lin Hsiu-ChenORCID

Abstract

Background: Inappropriate cycling positions may affect muscle usage strategy and raise the level of fatigue or risk of sport injury. Dynamic bike fitting is a growing trend meant to help cyclists select proper bikes and adjust them to fit their ergometry. The purpose of this study is to investigate how the “knee forward of foot” (KFOF) distance, an important dynamic bike fitting variable, influences the muscle activation, muscle usage strategy, and rate of energy expenditure during cycling. Methods: Six amateur cyclists were recruited to perform the short-distance ride test (SRT) and the graded exercise tests (GXT) with pedaling positions at four different KFOF distances (+20, 0, −20, and −40 mm). The surface electromyographic (EMG) and portable energy metabolism systems were used to monitor the muscle activation and energy expenditure. The outcome measures included the EMG root-mean-square (RMS) amplitudes of eight muscles in the lower extremity during the SRT, the regression line of the changes in the EMG RMS amplitude and median frequency (MF), and the heart rate and oxygen consumption during the GXT. Results: Our results revealed significant differences in the muscle activation of vastus lateralis, vastus medialis, and semitendinosus among four different pedaling positions during the SRT. During GXT, no statistically significant differences in muscle usage strategy and energy expenditure were found among different KFOF. However, most cyclists had the highest rate of energy expenditure with either KFOF at −40 mm or 20 mm. Conclusions: The KFOF distance altered muscle activation in the SRT; however, no significant influence on the muscle usage strategy was found in the GXT. A higher rate of energy expenditure in the extreme pedaling positions of KFOF was observed in most amateur cyclists, so professional assistance for proper bike fitting was recommended.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3