An Integrated Spatial Autoregressive Model for Analyzing and Simulating Urban Spatial Growth in a Garden City, China

Author:

Qiu Bingkui,Zhou MinORCID,Qiu YangORCID,Liu Shuhan,Ou Guoliang,Ma Chaonan,Tu Jiating,Li Siqi

Abstract

In the past, the research on models related to urban land-use change and prediction was greatly complicated by the high precision of models. When planning some garden cities, we should explore a more applicable, specific, and effective macro approach than the community-level one. In this study, a model consisting of spatial autoregressive (SAR), cellular automata (CA), and Markov chains is constructed. One It can well-consider the spatial autocorrelation and integrate the advantages of CA into a geographical simulation to find the driving forces behind the expansion of a garden city. This framework has been applied to the urban planning and development of Chengdu, China. The research results show that the application of the SAR model shows the development trend in the southeast region and the needs to optimize the central region and protect the western region as an ecological reserve. The descriptive statistics and the spatial autocorrelation of the residuals are reliable. The influence of spatial variables from strong to weak is distance to water, slope, population density, GDP, distance to main roads, distance to railways, and distance to the center of the county (district). Taking 2005 as the initial year, the land-use situation in 2015 was simulated and compared with the actual land-use situation. It seems that the Kappa coefficient of the construction-land simulation is 0.7634, with high accuracy. Therefore, the land use in 2025 and 2035 is further simulated, which provides a reference for garden cities to formulate a reasonable urban space development strategy.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3