Exploring the Multiscale Relationship between the Built Environment and the Metro-Oriented Dockless Bike-Sharing Usage

Author:

Li ZhitaoORCID,Shang Yuzhen,Zhao GuanweiORCID,Yang Muzhuang

Abstract

Dockless bike-sharing systems have become one of the important transport methods for urban residents as they can effectively expand the metro’s service area. We applied the ordinary least square (OLS) model, the geographically weighted regression (GWR) model and the multiscale geographically weighted regression (MGWR) model to capture the spatial relationship between the urban built environment and the usage of bike-sharing connected to the metro. A case study in Beijing, China, was conducted. The empirical result demonstrates that the MGWR model can explain the varieties of spatial relationship more precisely than the OLS model and the GWR model. The result also shows that, among the proposed built environment factors, the integrated usage of bike-sharing and metro is mainly affected by the distance to central business district (CBD), the Hotels-Residences points of interest (POI) density, and the road density. It is noteworthy that the effect of population density on dockless bike-sharing usage is only significant at weekends. In addition, the effects of the built environment variables on dockless bike-sharing usage also vary across space. A common feature is that most of the built environment factors have a more obvious impact on the metro-oriented dockless bike-sharing usage in the eastern part of the study area. This finding can provide support for governments and urban planners to efficiently develop a bike-sharing-friendly built environment that promotes the integration of bike-sharing and metro.

Funder

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3