Estimation of Fine-Grained Foot Strike Patterns with Wearable Smartwatch Devices

Author:

Joo HyeyeounORCID,Kim HyejooORCID,Ryu Jeh-KwangORCID,Ryu SeminORCID,Lee Kyoung-Min,Kim Seung-ChanORCID

Abstract

People who exercise may benefit or be injured depending on their foot striking (FS) style. In this study, we propose an intelligent system that can recognize subtle differences in FS patterns while walking and running using measurements from a wearable smartwatch device. Although such patterns could be directly measured utilizing pressure distribution of feet while striking on the ground, we instead focused on analyzing hand movements by assuming that striking patterns consequently affect temporal movements of the whole body. The advantage of the proposed approach is that FS patterns can be estimated in a portable and less invasive manner. To this end, first, we developed a wearable system for measuring inertial movements of hands and then conducted an experiment where participants were asked to walk and run while wearing a smartwatch. Second, we trained and tested the captured multivariate time series signals in supervised learning settings. The experimental results obtained demonstrated high and robust classification performances (weighted-average F1 score > 90%) when recent deep neural network models, such as 1D-CNN and GRUs, were employed. We conclude this study with a discussion of potential future work and applications that increase benefits while walking and running properly using the proposed approach.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3