Maternal Plasma Glycerophospholipids LC-PUFA Levels Have a Sex-Specific Association with the Offspring’s Cord Plasma Glycerophospholipids-Fatty Acid Desaturation Indices at Birth

Author:

Vamadeva Sowmya GiriyapuraORCID,Bhattacharyya Nagalakshmi,Sharan KunalORCID

Abstract

Fatty acid desaturases, the enzymes responsible for the production of unsaturated fatty acids (FA) in fetal tissues, are known to be influenced by maternal-placental supply of nutrients and hormones for their function. We hypothesize that there could be a gender-specific regulation of unsaturated FA metabolism at birth, dependent on the maternal fatty acid levels. In this study, 153 mother-newborn pairs of uncomplicated and ‘full-term’ pregnancies were selected and the FA composition of plasma glycerophospholipids (GP) was quantified by gas chromatography. The FA composition of mother blood plasma (MB) was compared with the respective cord blood plasma (CB) of male newborns or female newborns. Product to substrate ratios were estimated to calculate delta 5 desaturase (D5D), delta 6 desaturase (D6D) and delta 9 stearoyl-CoA-desaturase (D9D/SCD) indices. Pearson correlations and linear regression analyses were employed to determine the associations between MB and CB pairs. In the results, the male infant’s MB-CB association was positively correlated with the SCD index of carbon-16 FA, while no correlation was seen for the SCD index of carbon-18 FA. Unlike for males, the CB-D5D index of female neonates presented a strong positive association with the maternal n-6 long chain-polyunsaturated FA (LC-PUFA), arachidonic acid. In addition, the lipogenic desaturation index of SCD18 in the CB of female new-borns was negatively correlated with their MB n-3 DHA. In conclusion, sex-related differences in new-borns’ CB desaturation indices are associated with maternal LC-PUFA status at the time of the birth. This examined relationship appears to predict the origin of sex-specific unsaturated FA metabolism seen in later life.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3