Penetration and Adaptation of the Highly Viscous Zinc-Reinforced Glass Ionomer Cement on Contaminated Fissures: An In Vitro Study with SEM Analysis

Author:

AlJefri Galiah,Kotha SunilORCID,Murad Muhannad,Aljudaibi Reham,Almotawah Fatmah,Mallineni SreekanthORCID

Abstract

Objective: To evaluate the penetration and adaptation of highly viscous zinc-reinforced glass ionomer cement (ZRGIC), using a scanning electron microscope (SEM), when applied under various contaminated conditions on grooves and fissures of primary second molars. Materials and Methods: A total of 40 extracted human primary second molars were randomly assigned into five groups (8 teeth each), with different surface conditions (conditioned with 40% polyacrylic acid, dry condition, water contamination, saliva contamination, or saliva contamination and air-drying) on the occlusal surface before placement of zinc-reinforced highly viscous glass ionomer cement with the finger-press technique. After sectioning the teeth, they were subjected to SEM analysis, where four in each group underwent aging by thermocycling and the other four were without aging. ANOVA tests, post hoc analysis, and unpaired t-tests were used for statistical analyses. Results: There was a significant statistical difference in the sealant penetration in the non-aging group, but in the aging group, there was no significant statistical difference in the sealant penetration. On other hand, a significant statistical difference was found in the adaptation between all the groups (p < 0.05). Highly viscous zinc-reinforced glass ionomer fissure sealants have better fissure penetration and more intimate adaptation under fissures conditioned with 40% polyacrylic acid and dry surface fissures with no contamination. However, the best penetration and retention after aging were under contaminated fissures with a shiny layer of saliva. Conclusions: The ZRGIC is a highly viscous fluoride-releasing cement, effectively seals fissures by interfering with food lodgment and protecting teeth from caries. It is advisable to restore the fissures with the minimal technique of sensitive fluoride-releasing GIC, particularly in young, uncooperative children, rather than leaving a caries-prone environment.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3