Understanding the Effect of Deposition Technique on the Structure–Property Relationship of Polyaniline Thin Films Applied in Potentiometric pH Sensor

Author:

Fraga Vinicius M.1,Lovi Isabela T.1,Abegão Luis M. G.2ORCID,Mello Hugo J. N. P. D.1ORCID

Affiliation:

1. Materials Physics Group, Physics Institute, Goiás Federal University, Samambaia Campus, Goiânia 74001-970, GO, Brazil

2. Photonics Group, Physics Institute, Goiás Federal University, Samambaia Campus, Goiânia 74001-970, GO, Brazil

Abstract

The comprehension of potentiometric pH sensors with polymeric thin films for new and advanced applications is a constant technological need. The present study aimed to explore the relationship between the sensitivity and correlation coefficient of potentiometric pH sensors and the structure–property relationship of polyaniline thin films. The effect of the deposition method on the sample’s properties was evaluated. Galvanostatically electrodeposited and spin-coated polyaniline thin films were used as the sensing stage. Samples were electrodeposited with a current density of 0.5 mA/cm2 for 300, 600, and 1200 s and were spin coated for 60 s with an angular velocity of 500, 1000, and 2000 rpm. The electrodeposited set of films presented higher average sensitivity, 73.4 ± 1.3 mV/pH, compared to the spin-coated set, 59.2 ± 2.5 mV/pH. The electrodeposited films presented higher sensitivity due to their morphology, characterized by a larger roughness and thickness compared to spin-coated ones, favoring the potentiometric response. Also, their oxidation state, evaluated with cyclic voltammetry and UV-VIS spectroscopy, corroborates their sensing performance. The understanding of the structure–property relationship of the polymeric films affecting the pH detection is discussed based on the characteristics of the deposition method used.

Funder

Brazilian Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3