Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer

Author:

Budiman Arif1,Handini Annisa Luthfiyah1,Muslimah Mutia Nur1,Nurani Neng Vera1,Laelasari Eli1,Kurniawansyah Insan Sunan1ORCID,Aulifa Diah Lia2ORCID

Affiliation:

1. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

2. Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

Abstract

Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as “anticancer drug” and “amorphous solid dispersion” in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.

Funder

the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference259 articles.

1. Global Cancer Statistics, 2012;Torre;CA Cancer J. Clin.,2015

2. Haberman, A. (2023, June 24). MIT Study Finds That the Probability of Clinical Trial Success Is Nearly 40% Higher than Previously Thought. Available online: https://biopharmconsortium.com/2018/03/14/mit-study-finds-that-the-probability-of-clinical-trial-success-is-nearly-40-higher-than-previously-thought/.

3. The Valley of Death in Anticancer Drug Development: A Reassessment;Adams;Trends Pharmacol. Sci.,2012

4. Bridging Solubility between Drug Discovery and Development;Di;Drug Discov. Today,2012

5. Discovery of Small Molecule Cancer Drugs: Successes, Challenges and Opportunities;Hoelder;Mol. Oncol.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3