Compounding, Rheology and Numerical Simulation of Highly Filled Graphite Compounds for Potential Fuel Cell Applications

Author:

Celik Alptekin1,Willems Fabian1ORCID,Tüzün Mustafa1,Marinova Svetlana2,Heyn Johannes2,Fiedler Markus2,Bonten Christian1

Affiliation:

1. Institut für Kunststofftechnik, University of Stuttgart, 70569 Stuttgart, Germany

2. Coperion GmbH, 70469 Stuttgart, Germany

Abstract

Highly filled plastics may offer a suitable solution within the production process for bipolar plates. However, the compounding of conductive additives and the homogeneous mixing of the plastic melt, as well as the accurate prediction of the material behavior, pose a major challenge for polymer engineers. To support the engineering design process of compounding by twin-screw extruders, this present study offers a method to evaluate the achievable mixing quality based on numerical flow simulations. For this purpose, graphite compounds with a filling content of up to 87 wt.-% were successfully produced and characterized rheologically. Based on a particle tracking method, improved element configurations were found for twin-screw compounding. Furthermore, a method to characterize the wall slip ratios of the compounded material system with different filler content is presented, since highly filled material systems often tend to wall slip during processing, which could have a very large influence on accurate prediction. Numerical simulations of the high capillary rheometer were conducted to predict the pressure loss in the capillary. The simulation results show a good agreement and were experimentally validated. In contrast to the expectation, higher filler grades showed only a lower wall slip than compounds with a low graphite content. Despite occurring wall slip effects, the developed flow simulation for the design of slit dies can provide a good prediction for both low and high filling ratios of the graphite compounds.

Funder

Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference46 articles.

1. Ahlfs, S., Goudz, A., Streichfuss, M., Ahlfs, S., Goudz, A., and Streichfuss, M. (2020). Die Brennstoffzelle: Eine Technische und Logistische Betrachtung Sowie Deren Anwendung im ÖPNV, Springer Fachmedien Wiesbaden.

2. Hamacher, T., Töpler, J., and Lehmann, J. (2017). Wasserstoff und Brennstoffzelle: Technologien und Marktperspektiven, Springer Vieweg. 2 Auflage.

3. Kaiser, R.L. (2008). Bipolarplatten für Polymerelektrolytmembran-Brennstoffzellen aus Thermisch und Elektrisch Hochleitfähigen Thermoplastischen Kunststoffen: Rezeptierung, Herstellung, Charakterisierung und Anwendung. [Ph.D. Thesis, University of Stuttgart].

4. Bonten, C. (2019). Plastics Technology: Introduction and Fundamentals, Hanser.

5. Roth, B., Frank, R., Kleffel, T., Schneider, K., and Drummer, D. (2022). High-Precision Thin Wall Bipolar Plates for Fuel Cell Applications via Injection Compression Molding with Dynamic Mold Temperature Control. Polymers, 14.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3