Affiliation:
1. Department of Environmental Information and Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33550, Taiwan
2. Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Abstract
Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant panel is in the form of a sandwich: the outer layer isgalvanized steel plate, and fiber cement board or calcium carbonate board is used as the inner layer material, as these boards have the advantages of easy installation, good fire resistance, and explosion resistance. This study investigates the effect of adding different types of fibers to geopolymer mortar on the mortar’s basic mechanical properties, such as compression strength, bending strength, and impact resistance. The explosive resistance of the fiber-reinforced geopolymer mortar blast resistant panels was evaluated through free-air explosion. In this paper, experimental procedures and numerical simulation have been performed to study the failure modes, maximum deflection, and dynamic response of the fiber-reinforced geopolymer mortar blast resistant panel under free-air explosion. The research results can provide a reference for the design and production of blast resistant panels.
Funder
Ministry of Science and Technology of the Taiwan government
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献