Improvement of the Thermo-Oxidative Stability of Biobased Poly(butylene succinate) (PBS) Using Biogenic Wine By-Products as Sustainable Functional Fillers

Author:

Hiller Benedikt T.12ORCID,Azzi Julia L.3,Rennert Mirko1ORCID

Affiliation:

1. Institute for Biopolymers (ibp) at Hof University, Hof University of Applied Sciences, 95028 Hof, Germany

2. Plastics Technology Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, 98683 Ilmenau, Germany

3. Medical and Biological Physics Program, Faculty of Science, McMaster University, Hamilton, ON L8S 4LD, Canada

Abstract

Biobased poly(butylene succinate) (PBS) represents one promising sustainable alternative to petroleum-based polymers. Its sensitivity to thermo-oxidative degradation is one reason for its limited application. In this research, two different varieties of wine grape pomaces (WPs) were investigated as fully biobased stabilizers. WPs were prepared via simultaneous drying and grinding to be used as bio-additives or functional fillers at higher filling rates. The by-products were characterized in terms of composition and relative moisture, in addition to particle size distribution analysis, TGA, and assays to determine the total phenolic content and the antioxidant activity. Biobased PBS was processed with a twin-screw compounder with WP contents up to 20 wt.-%. The thermal and mechanical properties of the compounds were investigated with DSC, TGA, and tensile tests using injection-molded specimens. The thermo-oxidative stability was determined using dynamic OIT and oxidative TGA measurements. While the characteristic thermal properties of the materials remained almost unchanged, the mechanical properties were altered within expected ranges. The analysis of the thermo-oxidative stability revealed WP as an efficient stabilizer for biobased PBS. This research shows that WP, as a low-cost and biobased stabilizer, improves the thermo-oxidative stability of biobased PBS while maintaining its key properties for processing and technical applications.

Funder

Fachagentur Nachwachsende Rohstoffe e. V.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3