MDAR: A Knowledge-Graph-Enhanced Multi-Task Recommendation System Based on a DeepAFM and a Relation-Fused Multi-Gead Graph Attention Network

Author:

Li Songjiang1,Xue Qingxia1,Wang Peng12

Affiliation:

1. College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

2. Changchun University of Science and Technology Chongqing Research Institute, Chongqing 401120, China

Abstract

In recent years, MKR has attracted increasing attention due to its ability to enhance the accuracy of recommendation systems through cooperation between the RS tasks and the KGE tasks, allowing for complementarity of the information. However, there are still three challenging issues: historical behavior preferences, missing data, and knowledge graph completion. To tackle these challenging problems, we propose MDAR, a multi-task learning approach that combines DeepFM with an attention mechanism (DeepAFM) and a relation-fused multi-head graph attention network (RMGAT). Firstly, we propose to leverage the attention mechanism in the DeepAFM to distinguish the importance of different features for target prediction by assigning different weights to different interaction features of the user and the item, which solves the first problem. Secondly, we introduce deep neural networks (DNNs) to extract the deep semantic information in the cross-compressed units by obtaining the high-dimensional features of the interactions between the RS task and the KG task to solve the second problem. Lastly, we design a multi-head graph attention network for relationship fusion (RMGAT) in the KGE task, which learns entity representations through the different contributions of the neighbors by aggregating the relationships into the attention network of the knowledge graph and by obtaining information about the neighbors with different importance for different relationships, effectively solving the third problem. Through experimenting on real-world public datasets, we demonstrate that MDAR obtained substantial results over state-of-the-art baselines for recommendations for movie, book, and music datasets. Our results underscore the effectiveness of MDAR and its potential to advance recommendation systems in various domains.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3