Towards Digital Twins of 3D Reconstructed Apparel Models with an End-to-End Mobile Visualization

Author:

Doungtap Surasachai1,Petchhan Jirayu2,Phanichraksaphong Varinya1ORCID,Wang Jenq-Haur3ORCID

Affiliation:

1. International Graduate Program of Electrical Engineering and Computer Science, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

3. Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

Digital twin technologies are still developing and are being increasingly leveraged to facilitate daily life activities. This study presents a novel approach for leveraging the capability of mobile devices for photo collection, cloud processing, and deep learning-based 3D generation, with seamless display in virtual reality (VR) wearables. The purpose of our study is to provide a system that makes use of cloud computing resources to offload the resource-intensive activities of 3D reconstruction and deep-learning-based scene interpretation. We establish an end-to-end pipeline from 2D to 3D reconstruction, which automatically builds accurate 3D models from collected photographs using sophisticated deep-learning techniques. These models are then converted to a VR-compatible format, allowing for immersive and interactive experiences on wearable devices. Our findings attest to the completion of 3D entities regenerated by the CAP–UDF model using ShapeNetCars and Deep Fashion 3D datasets with a discrepancy in L2 Chamfer distance of only 0.089 and 0.129, respectively. Furthermore, the demonstration of the end-to-end process from 2D capture to 3D visualization on VR occurs continuously.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3