Effects of Surface Treatment Method Forming New Nano/Micro Hierarchical Structures on Attachment and Proliferation of Osteoblast-like Cells

Author:

Im Jae-Seung1ORCID,Choi Hyunsuk2ORCID,An Hyun-Wook3ORCID,Kwon Tae-Yub4ORCID,Hong Min-Ho1ORCID

Affiliation:

1. Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea

2. Department of Dentistry and Prosthodontics, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea

3. Department of Dental Science, Graduate School, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Republic of Korea

4. Department of Dental Biomaterials, School of Dentistry and Institute for Biomaterials Research & Development, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Republic of Korea

Abstract

Titanium (Ti) and Ti-based alloys are commonly used in dental implants, and surface modifications of dental implants are important for achieving osseointegration (i.e., direct connection between the implant surface and bone). This study investigated the effect of an eco-friendly etching solution—a hydrogen peroxide–sodium bicarbonate mixture—on the surface properties and contact angles of osteoblast adhesion and proliferation on Ti surfaces. Disk-shaped Ti specimens were prepared using different surface treatments (machining, sandblasting, and sandblasting/acid-etching), and they were immersed in the etching solution and ultrasonically cleaned. Surface characterization was performed using scanning electron microscopy, digital microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. MG-63 osteoblasts were cultured on the specimens, and their adhesion to the specimen surface and proliferation were examined using staining and the MTT assay, respectively. Additional etching with the etching solution caused the formation of nano/micro hierarchical structures, increased surface roughness, and enhanced hydrophilicity. Osteoblast adhesion and proliferation were found to improve on the modified surfaces. The eco-friendly etching method has the potential to enhance the biological properties of Ti implant surfaces and thereby improve dental implant performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3