Using Neural Networks to Uncover the Relationship between Highly Variable Behavior and EEG during a Working Memory Task with Distractors

Author:

Beauchene Christine,Men Silu,Hinault Thomas,Courtney Susan M.ORCID,Sarma Sridevi V.

Abstract

Value-driven attention capture (VDAC) occurs when previously rewarded stimuli capture attention and impair goal-directed behavior. In a working memory (WM) task with VDAC-related distractors, we observe behavioral variability both within and across individuals. Individuals differ in their ability to maintain relevant information and ignore distractions. These cognitive components shift over time with changes in motivation and attention, making it difficult to identify underlying neural mechanisms of individual differences. In this study, we develop the first participant-specific feedforward neural network models of reaction time from neural data during a VDAC WM task. We used short epochs of electroencephalography (EEG) data from 16 participants to develop the feedforward neural network (NN) models of RT aimed at understanding both WM and VDAC. Using general linear models (GLM), we identified 20 EEG features to predict RT across participants (r=0.53±0.08). The linear model was compared to the NN model, which improved the predicted trial-by-trial RT for all participants (r=0.87±0.04). We found that right frontal gamma-band activity and fronto-posterior functional connectivity in the alpha, beta, and gamma bands explain individual differences. Our study shows that NN models can link neural activity to highly variable behavior and can identify potential new targets for neuromodulation interventions.

Funder

Johns Hopkins Science of Learning Research Grant

National Institute of Neurological Disorders and Stroke

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3