Effect of Pre-Added HfO2 Inclusions on Carbide Morphology and Deformation Behavior in DZ125 Nickel-Based Superalloy

Author:

Feng Haoyuan12,Liu Furong12ORCID,Wang Qin12,Wang Dinggang3,Song Jinxia3,Xiao Chengbo3,Wu Yuhong12

Affiliation:

1. Key Laboratory of Trans-Scale Laser Manufacturing, Beijing University of Technology, Ministry of Education, Beijing 100124, China

2. Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

3. Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Abstract

Inclusions are important phases affecting material properties in complicated ways. In this paper, a quantitative study of the addition of HfO2 inclusions to DZ125 nickel-based superalloys was performed. Experimental results showed that the introduction of HfO2 inclusions caused a loss of strength and ductility. The carbide morphology also changed significantly from skeletal-shaped to block-shaped, resulting in a remarkable discrepancy in the fracture behavior under quasi-in-situ tensile testing. The SEM dynamic observations showed that cracks were initiated from the skeletal carbides and almost failed to propagate into the matrix. In contrast, the damage behavior of block-shaped carbides also involved internal cracking but with a tendency to form interconnected microcracks during propagation. A crystal plasticity finite element model (CPFEM) method was further developed to study the stress/strain behavior during the deformation process, considering the crystal orientations and microstructure morphologies from the EBSD data. Those elastoplastic parameters were determined through nanoindentation experiments. Simulation results verified that blocky carbides produced a pronounced strain concentration at the interface of the carbides and matrix, thereby increasing the tendency of crack formation. This paper provides a fundamental understanding of the role of inclusions in material recycling applications.

Funder

National Key Research and Development Plan

Foundation of Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, China

National Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3