Improved Anti-Saturation Performance of Fe-Si-Al Soft Magnetic Powder Core via Adjusting the Alloy Composition

Author:

Zhang Bowei1,Zou Zhongqiu1,Zhang Xuebin1,Han Yu2,Liu Wei1,Su Hailin1

Affiliation:

1. Anhui Red Magneto-Electric Technology Co., Ltd., Wuhu 241002, China

2. State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd., Beijing 102211, China

Abstract

Ball-milled Fe-Si-Al soft magnetic powder cores with the particle compositions away from the classical Sendust point were prepared in this work. The influences of alloy composition on the metallographic structure, density, hardness, and resistivity of Fe-Si-Al alloy, as well as the frequency-dependent permeability, loss, and the anti-saturation performance of Fe-Si-Al powder cores, were investigated systematically. It was found that the hardness of Fe-Si-Al alloy increases with the Si mass ratio and the saturation magnetization (Ms) increases with the Fe mass ratio. The alloy hardness affects the particle size after the ball-milling process and, thus, influences the porosity of the powder core. Together with adjusting the demagnetization field by controlling the particle size and the core’s porosity, changing the alloy composition to drive K and λ deviating from zero can effectively improve the anti-saturation performance of Fe-Si-Al powder cores at the expense of hysteresis loss, to some extent. In this work, good comprehensive magnetic properties were obtained in the Fe85.5-Si12-Al2.5 powder core. Its effective permeability percentage at 100 Oe and Ms were 59.12% and 132.23 emu/g, respectively, which are higher than those of the classical Sendust core. This work provides a feasible idea for optimizing the overall performance of the high-power magnetic device.

Funder

the Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3