Feasibility of using Waste Brine/Seawater and Sea Sand for the Production of Concrete: An Experimental Investigation from Mechanical Properties and Durability Perspectives

Author:

Cui YongxiangORCID,Jiang JiafeiORCID,Fu TengfeiORCID,Liu Sifeng

Abstract

The anti-corrosion property of fiber reinforced polymer (FRP) makes the concrete produced with marine wastes (waste brine after desalination) and resources (seawater and sea sand) a promising green structural material which can be a sustainable solution to fresh water and river sand scarcity in marine and offshore construction. To evaluate the feasibility of using waste and marine resources in concrete, this study investigated the mechanical properties and durability of brine-sea sand concrete (BSC) and seawater-sea sand concrete (SSC) with three different water-to-cement ratios and compared them to the corresponding ordinary concrete (OC). The results demonstrated that the increased salinity had a minor effect on the 28-day compressive strength, but a significant effect on the large-size capillary pore structure. The semi-quantitative analysis of the concrete phase based on the X-ray diffraction (XRD) and thermogravimetric analysis (TGA) revealed that BSC and SSC had larger mass fractions of the amorphous phase (mainly C-S-H), ettringite and gypsum during hydration. At last, the comprehensive performance of three different concrete mixtures was evaluated by five indexes (workability, alkali environment, compressive strength, carbonization resistance, and sulfate resistance). The results show that it is feasible to use brine/seawater and sea sand to replace freshwater and river sand for marine structural concrete reinforced with FRP.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3