An Adaptive Radon-Transform-Based Marker Detection and Localization Method for Displacement Measurements Using Unmanned Aerial Vehicles

Author:

Liu Jianlin1,Dai Wujiao1ORCID,Zhang Yunsheng1ORCID,Xing Lei12,Pan Deyong1

Affiliation:

1. Department of Surveying Engineering & Geo-Informatics, Central South University, Changsha 410083, China

2. School of Civil Engineering, Guangdong Construction Polytechnic, Guangzhou 510440, China

Abstract

UAVs have been widely used in deformation monitoring because of their high availability and flexibility. However, the quality of UAV images is affected by changing attitude and surveying environments, resulting in a low monitoring accuracy. Cross-shaped markers are used to improve the accuracy of UAV monitoring due to their distinct center contrast and absence of eccentricity. However, existing methods cannot rapidly and precisely detect these markers in UAV images. To address these problems, this paper proposes an adaptive Radon-transform-based marker detection and localization method for UAV displacement measurements, focusing on two critical detection parameters, namely, the radius of marker information acquisition and the edge width of the cross-shaped scoring template. The experimental results show that the marker detection rate is 97.2% under different combinations of flight altitudes, radius ratios of marker information acquisition, and marker sizes. Furthermore, the root mean square error of detection and localization is 0.57 pixels, significantly surpassing the performance and accuracy of other methods. We also derive the critical detection radius and appropriate parameter combinations for different heights to further improve the practicality of the method.

Funder

National Natural Science Foundation of China

Department of Natural Resources of Hunan Province

Science and Technology Research and Development Program Project of China railway group limited

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3