Abstract
The unexpected collapse of land surface due to subsidence is one of the most significant geohazards that threatens human life and infrastructure. Kabudrahang and Famenin are two Iranian plains experiencing several sinkholes due to the characteristics of the underground soil layers and extreme groundwater depletion. In this study, space-based Synthetic Aperture Radar images are used to investigate the ground displacement behavior to examine the feasibility of Sentinel-1 data in detecting precursory deformation proceeding before the sinkhole formation. The selected sinkhole occurred in August 2018 in the vicinity of Kerdabad village in Hamedan province with a 40 m diameter and depth of ~40 m. Time series of the European constellation Sentinel-1 data, spanning from January 2015 to August 2018, is analyzed, and the results revealed a 3 cm annual subsidence (–3 cm/year) along with the line-of-sight direction. Time-series analysis demonstrated that the driving mechanism of the sinkhole formation had a gradual process. Displacement of persistent scatterers (PSs) near the cave area had an acceleration by approaching the sinkhole formation date. In contrast, other areas that are far from the cave area show linear subsidence behavior over time. Additionally, the one-kilometer deformation profile over the cave area indicates a high subsidence rate precisely at the location where the sinkhole was formed later on 20 August 2018.
Subject
General Earth and Planetary Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献