Energy–Water–Carbon Nexus Study for the Optimal Design of Integrated Energy–Water Systems Considering Process Losses

Author:

Naveed Urwah,Mohammad Rozali Nor Erniza,Mahadzir Shuhaimi

Abstract

Integrated energy–water systems have been explored using different process integration techniques considering the energy–water–carbon nexus to minimize the carbon footprint, e.g., pinch analysis techniques (power cascade table, water cascade table, and energy planning pinch diagram). However, the power and water losses while considering the energy–water–carbon nexus have not been explored in detail in the previous works. This work focuses on the modifications of the existing pinch analysis methods for energy–water–carbon nexus study while considering power and water losses, for an optimized energy–water system. Power and water losses should not be neglected in the analysis as they have a significant impact on the carbon emissions and overall capacities of energy and water. The effect of losses on energy storage capacity, outsourced electricity, water supply volume and water storage capacity were evaluated on an industrial case study. Results from the case study demonstrate that, while considering power losses during power allocation can lower storage capacity, it tends to raise the needed outsourced electricity supply. As water supply volume tends to increase, the water storage capacity tends to decline when losses are considered. The results were compared to the data without losses, and it was observed that the storage capacity of energy decreases by 4% while outsourced energy increases by 6%. Water supply volume increases by 20% but water storage capacity decreases by 13.7%. The emissions from energy system remains same while from the water system the emissions rise significantly by 20%. It is expected that consumers that takes power and water losses into account will produce more realistic and reliable energy, water, and carbon reduction targets and prevent under-sizing issues in designing integrated energy–water systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3