An Integrated GIS-Based Reinforcement Learning Approach for Efficient Prediction of Disease Transmission in Aquaculture

Author:

Karras Aristeidis1ORCID,Karras Christos1ORCID,Sioutas Spyros1ORCID,Makris Christos1ORCID,Katselis George2ORCID,Hatzilygeroudis Ioannis1ORCID,Theodorou John A.2ORCID,Tsolis Dimitrios3ORCID

Affiliation:

1. Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece

2. Department of Fisheries and Aquaculture, University of Patras, 30200 Mesolongi, Greece

3. Department of History and Archaeology, University of Patras, 26504 Patras, Greece

Abstract

This study explores the design and capabilities of a Geographic Information System (GIS) incorporated with an expert knowledge system, tailored for tracking and monitoring the spread of dangerous diseases across a collection of fish farms. Specifically targeting the aquacultural regions of Greece, the system captures geographical and climatic data pertinent to these farms. A feature of this system is its ability to calculate disease transmission intervals between individual cages and broader fish farm entities, providing crucial insights into the spread dynamics. These data then act as an entry point to our expert system. To enhance the predictive precision, we employed various machine learning strategies, ultimately focusing on a reinforcement learning (RL) environment. This RL framework, enhanced by the Multi-Armed Bandit (MAB) technique, stands out as a powerful mechanism for effectively managing the flow of virus transmissions within farms. Empirical tests highlight the efficiency of the MAB approach, which, in direct comparisons, consistently outperformed other algorithmic options, achieving an impressive accuracy rate of 96%. Looking ahead to future work, we plan to integrate buffer techniques and delve deeper into advanced RL models to enhance our current system. The results set the stage for future research in predictive modeling within aquaculture health management, and we aim to extend our research even further.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3