Deep Learning Approach for Human Action Recognition Using a Time Saliency Map Based on Motion Features Considering Camera Movement and Shot in Video Image Sequences

Author:

Alavigharahbagh Abdorreza1ORCID,Hajihashemi Vahid1ORCID,Machado José J. M.2ORCID,Tavares João Manuel R. S.2ORCID

Affiliation:

1. Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

2. Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract

In this article, a hierarchical method for action recognition based on temporal and spatial features is proposed. In current HAR methods, camera movement, sensor movement, sudden scene changes, and scene movement can increase motion feature errors and decrease accuracy. Another important aspect to take into account in a HAR method is the required computational cost. The proposed method provides a preprocessing step to address these challenges. As a preprocessing step, the method uses optical flow to detect camera movements and shots in input video image sequences. In the temporal processing block, the optical flow technique is combined with the absolute value of frame differences to obtain a time saliency map. The detection of shots, cancellation of camera movement, and the building of a time saliency map minimise movement detection errors. The time saliency map is then passed to the spatial processing block to segment the moving persons and/or objects in the scene. Because the search region for spatial processing is limited based on the temporal processing results, the computations in the spatial domain are drastically reduced. In the spatial processing block, the scene foreground is extracted in three steps: silhouette extraction, active contour segmentation, and colour segmentation. Key points are selected at the borders of the segmented foreground. The last used features are the intensity and angle of the optical flow of detected key points. Using key point features for action detection reduces the computational cost of the classification step and the required training time. Finally, the features are submitted to a Recurrent Neural Network (RNN) to recognise the involved action. The proposed method was tested using four well-known action datasets: KTH, Weizmann, HMDB51, and UCF101 datasets and its efficiency was evaluated. Since the proposed approach segments salient objects based on motion, edges, and colour features, it can be added as a preprocessing step to most current HAR systems to improve performance.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3