Comparing the Robustness of the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM) against Local Model Misspecifications with Alternative Estimation Approaches

Author:

Robitzsch AlexanderORCID

Abstract

Structural equation models (SEM), or confirmatory factor analysis as a special case, contain model parameters at the measurement part and the structural part. In most social-science SEM applications, all parameters are simultaneously estimated in a one-step approach (e.g., with maximum likelihood estimation). In a recent article, Rosseel and Loh (2022, Psychol. Methods) proposed a two-step structural after measurement (SAM) approach to SEM that estimates the parameters of the measurement model in the first step and the parameters of the structural model in the second step. Rosseel and Loh claimed that SAM is more robust to local model misspecifications (i.e., cross loadings and residual correlations) than one-step maximum likelihood estimation. In this article, it is demonstrated with analytical derivations and simulation studies that SAM is generally not more robust to misspecifications than one-step estimation approaches. Alternative estimation methods are proposed that provide more robustness to misspecifications. SAM suffers from finite-sample bias that depends on the size of factor reliability and factor correlations. A bootstrap-bias-corrected LSAM estimate provides less biased estimates in finite samples. Nevertheless, we argue in the discussion section that applied researchers should nevertheless adopt SAM because robustness to local misspecifications is an irrelevant property when applying SAM. Parameter estimates in a structural model are of interest because intentionally misspecified SEMs frequently offer clearly interpretable factors. In contrast, SEMs with some empirically driven model modifications will result in biased estimates of the structural parameters because the meaning of factors is unintentionally changed.

Publisher

MDPI AG

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3