Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features

Author:

Andrunik MagdalenaORCID,Bajda TomaszORCID

Abstract

Surfactant-modified clay minerals are known for their good sorption properties of both organic and inorganic compounds from aqueous solutions. However, the current knowledge regarding the effect of both cationic and nonionic surfactants on the properties of bentonite is still insufficient. Bentonite, with montmorillonite as the base clay, was modified with hexadecethyltrimethylammonium bromide (a cationic surfactant) in the amount of 1.0 cation exchange capacity (CEC) of bentonite and varying concentrations of t-octylphenoxypolyethoxyethanol (Triton X-100, a nonionic surfactant). We aimed to improve the understanding of the effect of nonionic and cationic surfactants on clay minerals. The modified bentonites were characterized by X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (SEM) and specific surface area and pore volume (BET). According to our results, the presence of a cationic surfactant significantly increased the amount of the adsorbed nonionic surfactant. Moreover, an increase in the concentration of nonionic surfactants is also associated with an increase in the effectiveness of the modification process. Our results indicate that the amount of nonionic surfactant used has a significant effect on the properties of the obtained hybrid material. Modification of bentonite with a nonionic surfactant did not cause an expansion of the interlayer space of smectite, regardless of the presence of a cationic surfactant. The modification process was found to significantly decrease the specific surface area of bentonite. Improvement of hydrophobic properties and thermal stability was also observed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3