Design, Fabrication, and Characterization of Capacitive Micromachined Ultrasonic Transducers for Transcranial, Multifocus Neurostimulation

Author:

Ibn Minhaj Tamzid1ORCID,Annayev Muhammetgeldi2,Adelegan Oluwafemi J.2ORCID,Biliroğlu Ali Önder2ORCID,Yamaner Feysel Yalçın2,Oralkan Ömer2ORCID

Affiliation:

1. Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA

2. Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA

Abstract

In a recent study using 3-D fullwave simulations, it was shown for a nonhuman primate model that a helmet-shaped 3D array of 128 transducer elements can be assembled for neurostimulation in an optimized configuration with the accommodation of an imaging aperture. Considering all acoustic losses, according to this study, for a nonhuman primate skull, the assembly of the proposed transducers was projected to produce sufficient focusing gain in two different focal positions at deep and shallow brain regions, thus providing sufficient acoustic intensity at these distinct focal points for neural stimulation. This array also has the ability to focus on multiple additional brain regions. In the work presented here, we designed and fabricated a single 15 mm diameter capacitive micromachined ultrasonic transducer (CMUT) element operating at 800 kHz central frequency with a 480 kHz 3 dB bandwidth, capable of producing a 190 kPa peak negative pressure (PNP) on the surface. The corresponding projected transcranial spatial peak pulse average intensity (ISPPA) was 28 Wcm−2, and the mechanical index (MI) value was 1.1 for an array of 128 of these elements.

Funder

National Institute of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3