Large Eddy Simulation of Flow Characteristics around Cylinders with Crosswise and Streamwise Arrangements in Ocean Energy

Author:

Zhai Weiming1,Liu Ming2ORCID,Huang Changjiu3,Cheng Daoxi1,Tan Lei2ORCID

Affiliation:

1. Reactor Thermal-Hydraulic Laboratory, Reactor Engineering Technology Research Institute, China Institute of Atomic Energy, Beijing 102413, China

2. State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3. State Grid Sichuan Electric Power Company, Chengdu 610041, China

Abstract

The flow around cylinders is one of the most fundamental phenomena in extracting wave energy from ocean waves. Compared with flows around a single cylinder, the investigation of flows around multiple cylinders is still limited and requires further studies to reveal flow characteristics. To this end, large eddy simulations are conducted to investigate the flow around double cylinders with crosswise and streamwise arrangements. Systematic studies on the influence of the number of mesh cells, the first near-wall mesh size, and the transient time step are carried out to achieve accurate and efficient simulations. The drag coefficient, flow separation, and flow pattern for different arrangements under various cylinder spacings are analyzed according to simulation results. For the crosswise arrangement, the flow pattern switches from the single-body regime to the synchronized vortex-shedding regime as the spacing increases. For the streamwise arrangement, the flow pattern develops from the reattachment regime to the vortex-shedding regime as the spacing increases.

Funder

State Key Laboratory of Hydroscience and Engineering

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3