Rapid Detection of Phytophthora cambivora Using Recombinase Polymerase Amplification Combined with CRISPR/Cas12a

Author:

Zhou Jing1,Dai Hanqian2,Dai Tingting1ORCID,Liu Tingli3

Affiliation:

1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Nanjing Institute of Surveying, Mapping & Geotechnical Investigation, Co., Ltd., Nanjing 210005, China

3. School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China

Abstract

Phytophthora cambivora is a major quarantine pathogen that devastates economically important plants across the globe. P. cambivora causes ink disease in chestnut trees and root and stem rot in various fruit trees, resulting in significant yield reductions and plant death. Given the potential dangers of P. cambivora, effective detection methods are needed for both disease management and prevention. In this study, based on the whole-genome screening of specific target genes, a combination of the recombinase polymerase amplification technique (RPA) and CRISPR/Cas12 was established to detect P. cambivora. The RPA-CRISPR/Cas12a assay was able to specifically detect 7 target isolates of P. cambivora but did not detect the following 68 non-target isolates, including 28 isolates of Phytophthora, 3 isolates of Pythium, 3 isolates of Phytopythium, 32 isolates of fungi, and 2 isolates of Bursaphelenchus. The RPA-CRISPR/Cas12a detection method was able to detect 10 pg·μL−1 of P. cambivora genomic DNA at 37 °C within a short time span (60 min). Additionally, this method can identify the presence of P. cambivora in artificially inoculated apple fruits. In summary, compared with conventional detection techniques, the RPA-CRISPR/Cas12a detection method eliminates the need for expensive instruments, long reaction times, and high amounts of raw materials and can detect P. cambivora in imported plants at entry ports, enabling instant prevention and detection.

Funder

National Key R&D Program of China

Natural Science Foundation of Jiangsu Province

Jiangsu University Natural Science Research Major Project

Qinglan Project of 2020

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3